This function applies HDBSCAN, a density-based clustering algorithm, to the corrected dimension reduction of a Seurat object.
Usage
hdbscan.seurat(
seu,
batch.var = "Batch",
reduction = "pca",
dims = seq_len(15),
minPts = 25
)
Arguments
- seu
A Seurat object containing integrated or batch-corrected data (e.g. PCA results).
- batch.var
Character string specifying the metadata column that contains batch information. Default is "Batch".
- reduction
Character string specifying the name of the dimension reduction to use (e.g. "PCA"). Default is "PCA".
- dims
Numeric vector indicating the dimensions to be used for initial clustering. Default is 1:15.
- minPts
Integer specifying the minimum number of points required to form a cluster. This value is passed to the
hdbscan
function. Default is 25.
Value
A Seurat object with two additional columns in its meta.data
:
dbscan_cluster
and initial_cluster
.